
unclassified
ECU.'Iry CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBE
r R

12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIER

~N6-LIS-89- 23-024. TITLE (ad Subtitle) S. TYPE OF REPCRT A PERIOD COVERED

Semiannual Technical Report No. 2 Technical,-Interim

O"VLSI Architectures & CAD"
6. PERFORMING ORG. REPORT NUMBER

0 7. AUTNOR(e) 6. CONTRACT OR GRANT NUMmER(e)

Northwest Laboratory for Integrated Systems N00014-88-K-0453

9. PERFORMING OROANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Northwest Laboratory for Integrated Systems AREAI WORKUNITNUMBERS

University of Washington
Dept. of Computer Science, FR-35 Seattle,WA 9819 ________________ _

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

DARPA- ISTO April, 1989

1400 Wilson Boulevard 13. NUMBER OF PAGES

Arlington, VA 22209 43 pages
14. MONITORING AGENCY NAME & ADDRESSIf different from Controlling Office) IS. SECURITY CLASS. (of Cie repOrt)

Office of Naval Research - ONR
Information Systems Program - Code 1513: CAF unclassified
800 North Quincy Street IS&. DECLASSIFICATIONiDOWNGRADING

StreetSCH EDULE
Arlington, VA 22217

1. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

nTIC
17. DISTRIBUTION STATEMENT (of the abstract entered In Block 30. It different from Report) f E CT

% ,IAPR 1989

l. SUPPLEMENTARY NOTES
--

IS. KEY WORDS (Continue on reveree aide If neceem'y and Identify by block number)

NW LIS, VLSI, CMOS, CAD, APEX, Wirelisp, OHMICS, Parallelism, Logic Arrays,
Simframe, Multimode Simulation

20. ABSTRACT (Continue an reverse aide It necessary aid Identify by block number)

This document reports onthe research activities of the Northwest Laboratory
for Integrated Systems, for the period of November 15, 1988 to April 3, 1989,
under the sponsorship of the Defense Advanced Research Projects Agency, and
the Office of Naval Research, under contract number N00014-88-K-0453.

DD jAN 1473 EDITION OF I NOV OS IS OBSOLETE unclassified
S/N 0102-LF-014-6601

t. ECtIRITY CLASSIFICATION OF TNIS PAGE (When Date Entered)

SNORTHWEST LIS
(LABORATORY FOR INTEGRATED SYSTEMS)

Semiannual Technical Report No. 2
."VLSI Architectures & CAD"

University of Washington

April 3, 1989
TR #89-23-02

Reporting Period: November 15, 1988 - April 3, 1989

Principal Investigator: Lawrence Snyder

Sponsored by:

Defense Advanced Research Projects Agency (DoD)
Issued by Office of Naval Research

Under Contract #N00014-88-K-0453

.The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the

official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency of the U.S. Government.

Contents

1 Overview of Activities 2

2 'Bit Serial vs Word Parallel Computer 3

3 'Development of Wirelisp 4

4 Simframe: A Framework for Multimode Simulation' 5

5 'Behavioral Representation of Digital Systems, 6

6 timing Optimization of Multi-phase Sequential Logic, 6

7 Adaptive Scripts for MIS, 7

-
8 A Demonstration of the APEX Architecture' 8

9 "Hardware Data Compressor- 9

1 ieconfigurable Logic Arrays - 10

11 I ork on a Low Cost Testing Environment' 11

Appendices

A Are Bit Serial or Word Parallel Computers Faster?

B Wirelisp: Graphical Programs for Digital System Design.

C -- 'bhmics: A Program to Check Ohmnic Contacts

-'. ",. "

" 1) -. '

1 Overview of Activities

Current research in the LIS is focused in three areas - architecture studies, general
techniques for IC CAD, and application-specific circuit designs.

A recent study of bit serial and word parallel computer architectures has yielded some
interesting information on the utility of each in various problem realms. The primary
result is a strong argument in favor of a mean between the extremes of large numbers
of bit serial processors and small numbers of processors each with a wide datapath.

For some time we have investigated an architecture for efficient curve drawing. This
work has led to two different chip implementations - APEXI and APEXII. Recently
we received functional chips of AFEXI and are now designing a board-levei interface
to the Nu Bus of an Apple Mac II. When completed, this system will be a prototype
solids modeling workstation based on the APEX architecture.

Recently we bega-, investigating various data compression algorithms with character-
istics amenable to hardware implementation. This work has so far yielded a variant
of the Lempel-Ziv algorithm that adapts continuously to its input and is appropriate
to a hardware implementation with fixed memory.

Several efforts have been pursued in the area of design specification and optimization.
Wirelisp is a language for specifying circuit structure that allows graphical and pro-
cedural constructs to be mixed at a fine-grained level. Also in this area is an effort
to formulate a behavioral representation of digital circuits. This representation is
novel in that it unifies the behavior and structure and includes timing behavior and
constraints.

Several design optimization projects deal with extensions to MIS, the Multilevel Logic
Minimization tool developed at UCB. One project is to develop adaptive scripts to
control the minimization search. Another attempts to introduce timing constraints
into the minimization process, and find an optimal distribution of logic between phases
of a multiphase sequential circuit.

In the area of design verification, we have two efforts. One is the development of
a framework for multimode simulation. Another is a tool (OHMICS) for analyzing
substrate connectivity in CMOS designs and reporting regions of substrate that are
insufficiently tied to the appropriate power rail. (Described in Appendix C.)

We continue our distribution of VLSI design tools. Since September 1988, when
Release 3.2 first became available, we have distributed over 43 copies.

2

2 Bit Serial vs Word Parallel Computers

(Sam Ho, Larry Snyder)

The word size of a computer, or the size of the largest number that the computer can
handle in one operation, is one of the most basic parameters of a computer. Over
the years, microprocessors have grown from four bits to eight, sixteen and thirty-two
bits. Meanwhile, larger computers have used thirty-two, thirty-six, and sixty bits,
among others, as a word size. The number of processors is another crucial measure of
a computer. It is common for computer manufacturers to offer additional processors
as attachments to improve the performance of an existing computer. Some designers
take the view that it is best to maximize the number of processors in a computer at
the expense of using a narrower processor. This view is typified by the Connection
Machine, which has 65,536 processors, each capable of handling only a single bit.

The goal of this research is to determine the relative merits of a small number of
high bandwidth processors versus a large number of low bandwidth. correct, if any.
To do this, we reduced computation to the act of transferring information between
the processors and memory on the principle that any other computation would be
affected proportionately. We also assumed that because of latency in the memory
system, there is some delay associated with this activity during which some other
references might be processed. Then we examined the ways to convert from one
processor to another, subject to the condition that the product of the number of
processors and the width of each is held constant. In this way, the effect of the width
is separated from any change in the overall size of the computer system.

The result is that neither extreme is optimal, but an intermediate range is best.
Overly wide processors are unable to take advantage of the excess width, while overly
narrow (and numerous) processors are unable to take advantage of excess processors.
Furthermore, the intermediate range of best performance is more than a single point.
At any point within a substantial region, changes in processor width are exactly offset
by the corresponding change in the number of processors. Analysis and results are
described further in Appendix A.

3

3 Development of Wirelisp

(Zhanbing Wu, Carl Ebeling)

Wirelisp is a language used to describe the structure of a circuit. The structure
can be described both graphically and procedurally where lisp expressions may be
included in circuit drawings and circuit drawings may be included in lisp expressions.
A number of features such as structured signals, iterators and optional parameters
make the language very expressive. A complete description of the language is included
in Appendix B.

The first version of a Wirelisp environment has been operational for about six months.
This environment includes the graphical editor XDP for drawing Wirelisp programs,
a backend analyzer which converts these drawings into Wirelisp, and a Wirelisp inter-
preter written in T. This system has been used to design the Reprogrammable Logic
Array chip described in section 10.

We have recently finished work on several enhancements. The most important is
the ability to reference arbitrary behavioral descriptions. Behavioral descriptions are
represented as modules for which the input-output behavior is specified explicitly,
for example using logic equations or finite state machines. These modules reference
both a behavioral description and a method by which the structure implementing
that behavior can be generated. This implementation can vary depending on the
particular output desired. For example, the implementation may be a functional
model for COSMOS or Network C, a multi-level circuit generated by the MIS tools
or a PLA. The overall goal of this work is to provide a simple framework in which
the designer can specify and evaluate a system at a level appropriate to the level of
detail required.

We have modified the graphical editor XDP so that it works under X version 11.
A number of enhancements are planned to allow the efficient editing of hierarchical
circuit descriptions and text.

Acoesslon For

NTIS GRAi I
DTIC TAB
Unannounced i
Justifioation

D Istribution/

Availability Codes
Avarn- ii/or

4ist Special
1Sp so 181

4 Simframe: A Framework for Multimode Simu-
lation

(Craig Anderson, Mary Bailey, Gaetano Borriello, Larry AfcMurchie)

In the process of designing a circuit, one uses a variety of simulation models varying
in the level of abstraction they employ. Typical model types include iterated timing
analysis, switch level RC delay, switch-level unit delay, and boolean functional models.
The choice of a model depends on the characteristics of the individual subcircuit that
is being modeled. Simulating the entire circuit at a particular level may not be
possible if the functionality of a device is not adequately described at that level. This
may occur when a mostly digital circuit has some analog character, preventing the
use of a switch-level model to be used on the entire circuit. At the same time, the
size of the circuit may prevent the use of analog models for all the devices.

This classic problem illustrates the need for a multimode simulator, one that allows
the use of varying levels of models simultaneously. Our approach to the problem
is "Simframe", an event-driven framework that supports a variety of models. The
framework revolves around the general notions of events and data types. Data types
are determined by the the type of model being used. An important point is that data
types are not hard-wired into the event handling mechanism; they are dependent on
the characteristics of user-defined models.

A major problem to be solved in any multimode simulation scheme is how to handle
the conversion between data types at the interfaces between models. A typical con-
version one needs to make is between the switch-level resistance/voltage pairs and
analog current/conductance pairs. Although this Thevenin/ Norton transformation
is straightforward, it may be complicated by the presence of unknown resistances and
voltages in the switch level state description. An additional complication is bidirec-
tionality of an interface and the need for an iterative scheme to settle on the state of
the circuit.

Another problem to be dealt with is the concept of time. How does one translate
a unit-delay switch-level simulator's notion of time into the real time of an analog
simulator or the user-specified delays of a functional simulator?

Thus far, we have looked at several simulation models and proposed specifications
for the data conversion between them as well as schemes for the synchronization of
individual clocks. Included in our survey are the switch level unit delay models of

MOSSIM II and COSMOS; the switch level RC delay model of RNL; the iterated

timing analysis algorithm used in SPLICE3; and the functional circuit description of

5

Network C. Current work focuses on the specific problem of extracting the necessary
voltage and path resistance information from the MOSSIM II algorithm.

5 Behavioral Representation of Digital Systems

(Tod Amon, Gaetano Borriello, Rick Hood, Wayne Winder)

Our research involves developing a new behavioral representation for digital systems.
After we develop a working representation we intend to develop general algorithms
for the synthesis of structure (hardware) from our representation. Our representation
for behavior is novel in that it unifies the representations of behavior and structure
and includes timing behavior and constraints. It is a low level representation; we
envision the existence of a variety of CAD tools which compile high level behavioral
descriptions (timing diagrams, HDL, FSMs, etc) into our representation. Additional
CAD tools would then synthesize hardware using our representation and optimize for
a variety of different needs.

We are currently in the process of completing the syntax and semantics of our pro-
posed representation. We have a working formal description of its syntax and seman-
tics, and are developing an EDIF (Electronic Design Interchange Format) ASCII file
representation which will be used as input to synthesis algorithms and can be derived
from high level languages which compile into our representations.

We have developed a representation for the behavior of digital systems and need to
validate it by developing algorithms and tools which work with the representation.
Our first step will be to demonstrate that a series of transformations applied to the
representation will result in the synthesis of valid structure. This work will require
the development of new algorithms for behavioral synthesis, as our representation
allows for a very general class of behavioral specification and includes complex timing
constraints.

6 Timing Optimization of Multi-phase Sequential
Logic

(Karen Bartlett, Gaetano Borriello, Sitaram Raju)

Timing optimization is used to reduce the cycle time of a synchronous system. In
the case of complex integrated circuits, the design often uses multi-phase clocking

6

methodologies. Most current logic synthesis and optimization systems only optimize
the logic between register or latch boundaries for single-phase systems. Retiming
algorithms exist to relocate registers and form an equivalent circuit with the shortest
cycle time (1]. However these algorithms are not optimal for multi-phase logic and
are only applicable when all phases are of the same width. Recently, optimization
approaches have been proposed that move logic across register boundaries [2, 3].
However, these approaches use retiming algorithms as a subroutine and therefore
cannot support general multi-phase logic.

Our scheme is oriented towards systems with two or more clock phases. The phases
are not required to be of the same duration. Input and output signals are specified
as being valid or required to be valid during any subset of the phases available.

We are using an existing logic synthesis system (MIS) to perform timing optimization
on the logic and define the time for each phase. Our algorithms first move logic off
the critical paths and across latch boundaries so as to reduce the total cycle time.
This is then followed by an area optimization step in which logic is merged to reduce
area as long as the critical path logic can still be implemented within the same cycle
time.

[1] . C.E. Leiserson, F.M. Rose, and J.B. Saxe, "Optimizing Synchronous Circuitry
by Retiming," Proceedings of the Third Caltech Conference on VLSI, March
1983.

[2] . S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli, "Retiming
and Resynthesis: Optimizing Sequential Networks with Combinational Tech-
niques", Proceedings of International Workshop on Logic Synthesis, May 1989.

[3] G. De Micheli, "Synchronous Logic Synthesis", Proceedings of International
TWo;kshop ,? Logic Synthesis, May 1989.

7 Adaptive Scripts for MIS

(Gaetano Borriello, Robert Condon)

MIS (the Berkeley multi-level optimization system) provides a set of operations use-
ful in minimizing a multi-level network of combinatorial logic. The normal method
of using these operations is by applying them in a predetermined order (through
"scripts"). We have been investigating adding backtracking and conditional execu-
tion of the commands in a script.

To this end, we have written a T language interface to MIS. The T interface allows
commands to iterate, conditionally execute or to backtrack.

Preliminary investigation indicates that the MIS standard script does reasonably well
if the implementation technology is simple standard cells or gate matrix layout. We
are currently investigating the use of MIS for more constrained technology mapping.
Examples include the new PLDs of non-MOS technologies such as ECL.

8 A Demonstration of the APEX Architecture

(Gaetano Borriello, Tony DeRose, Brian Lockyear, Al-Ping Bien)

APEX is an architecture that facilitates efficient drawing of curves and surfaces from
sets of control points (see Appendix B of LIS Semiannual TR, November, 1987). We
recently completed testing of MOSIS fabrications of APEXI, one implementation of
this architecture. 2 out of 30 chips were functional.

We are currently developing a board design to interface the chip with a Macintosh II
computer. The board will host three APEX chips, one for each coordinate axis. Addi-
tionally, peripheral circuitry for host interfacing and coordinate transformations will
be resident on board. The finished prototype will provide real-time point coordinate
streams for display on a stereo monitor.

To date this project, on which we began efforts Winter term 1989, has focused on de-
sign and simulation of circuitry required to translate the 16 bit x, y, and z coordinates
produced by the trio of APEX chips into a pair of x, y coordinates suitable for display
upon a stereo monitor system. In order to avoid a system bottleneck, we currently
hope to perform this translation in hardware using some form of programmable logic
device.

Design of the translation logic has allowed us to experiment with the development of
significant logic structures using the Berkeley Bdsyn logic language. The equations
required for the translation have been coded into the Bdsyn language, the programs
"compiled" and converted into a format suitable for simulation using UW's RNL
program.

The demonstration board will be built around an Apple Macintosh Coprocessor Plat-
form. This board hosts a 68000 capable of running as master of the Macintosh internal
Nu-Bus. The 68000 will be responsible for coordinating activities on the APEX board
and for high speed transfer of data to the stereo frame buffers. The speed of the board
will be limited by the bus speed and not the APEX chips.

8

9 A Hardware Data Compressor

(Gaeto-" Borriello, Suzanne Bunton, Richard Ladner, Ken Whaley)

The goal ot this project is to construct a hardware data compressor with the following
properties: it must consume one input every "cycle", where a cycle is bounded by
.00ns: an "input" must be as wide as possible, our ultimate goal being 128 bits
or more: it must effectively compress all types of data (i.e. the algorithm must be
universal); the implementation must be containable on a small board.

There are essentially four existing types of data compression methods amenable to
our needs: Huffman, Arithmetic, BSTW, and Lempel-Ziv. The two algorithms with
the most modest memory and computational requirements, also happen to be based
upon a dynamic data structure for maintenance of a dictionary of words which have
been seen recently. These are BSTW and Lempel-Ziv. BSTW is recent and hitherto
unimplemented, as revealed by its authors and the literature; during the next six
months we will be looking at the feasibility of a hardware implementation of this
algorithm. Lempel-Ziv has been implemented both in hardware (HP's chip, MAGIC)
and software (UNIX "compress") and is well-known for its raw speed and effectiveness
on all types of data.

The UNIX "compress" implementation is based upon Terry Welch's 1984 variation of
the Lempel-Ziv method (LZW). One flaw lies in the fact that the dictionary ceases to
adapt after it fills up. It is important that a universal hardware data compressor adapt
to the input stream continually, since the memory size is fixed and input streams
can be arbitrarily long. A long input stream in which the first several words are
not representative of the rest of the data will cause LZW to perform poorly. Our
theoretical result is a new dynamic data structure which enables the dictionary of
a Lempel-Ziv scheme to adapt continually, thus avoiding this problem entirely. At
this point the algorithm design using this adaptation scheme is correct and complete.
Compressor and decompressor simulators have been completed and reflect register
transfer descriptions of the circuits. Proofs of worst case performance have been
outlined. The simulators have been used on a small scale to compare the performance
of our algorithm to LZW (it's at least as effective, using the same size of dictionary).

The hardware implementation is underway and is described below.

Our Lempel-Ziv data compressor consumes one k-bit input every 100 ns. where k can

be as large as 8. For k < 6, the design fits on a 8x9mm chip. Best average compression
results are obtained when the output channel is between 1.5 and 2 times as wide as
the input channel. The memory requirements are roughly 2' words, where w is the
output channel width. The design is very simple and consists of 2 dual-ported CAMs

9

and 8 registers with only a handful of nand gates implementing the control. The key
features of the design are the CAMs. CAMI must support simultaneous matches and
writes, and CAM2 must support simultaneous reads/writes as well as match writes.
All hazards due to simultaneous operations to one cell are avoided via control logic
external to the memory. Layouts of both CAM cells have been done according to
MOSIS SCMOS rules and simulated using SPICE. The size and speed of the cells
are well within our requirements. The rest of the circuit remains to be constructed,
though there is plenty of area for registers, counter, logic, busses, precharger logic,
and decoders.

10 Reconfigurable Logic Arrays

(Bill Barnard, Robert Condon, Carl Ebeling)

Recently work was started on a Re-programmable Logic Array chip. While the chip
is intended for generic pattern matching applications, the initial design application
is geared towards position evaluation in chess. This project has also served as a test
vehicle for some of the tools we have developed over the past two years, most notably
Wirelisp and WIN.

The current status of the project is as follows:

* The entire RLA chip has been specified using Wirelisp and simulated using RNL
and COSMOS.

* Layout generators have been written using WIN for all the modulE in the chip.
WIN is a language developed at the University of Washington which forms the
basis of a structured environment for design generator development.

The layout generated by the WIN module generators has been validated using
Gemini. The placement of modules was done manually using Magic and the
majority of the routing done using the Magic router.

* The key building block of the RLA chip, a programmable PLA with 8 inputs,
8 outputs and 32 product terms, has been successfully fabricated and tested.

* The complete RLA chip is currently being simulated and the architectural pa-
rameters are being finalized. The final routing and verification using Gemini
should be completed in April and the chip released for fabrication.

10

11 Work on a Low Cost Testing Environment

(Carl Ebeling, Ned McKenzie)

We are currently designing an inexpensive low speed tester for use with the MacIl.
The goal is to produce a high-quality environment for testing and debugging chips
and boards for use in hardware and VLSI design classes. Apple is partially funding
this effort and hopes to make the tester available to the University community at
nominal cost.

The tester will conform to a standard software interface which will be used to integrate
simulators, test program languages and display facilities. The goal will be to make the
chip under test appear as a module in a simulation so that test programs developed for
simulation can be used to test the chip or board as well. The tester will be extensible
in terms of I/O signals and we are currently investigating ways to allow higher speed
testing as well. We expect to have a prototype tester in operation by Summer and
the software environment in place by Fall.

11

r

Are Bit Serial or Word Parallel Computers
Faster?

Samuel Ho and Lawrence Snyder
Department of Computer Science
University of Washington, Seattle

Keywords: Architecture, Memory bandwidth, Model of parallel computa-
tion, Latency.

Abstract
A model of parallel computation based on memory references is pre-

sented. The model describes computation as a sequence of references.
Within this model two theorems are proved regarding the effect of mem-
ory latency, instruction execution time, and memory bandwidth on com-
putation time, and the tradeoffs possible among these parameters are
identified. These theorems are then applied to a comparison of bit-serial
and word-parallel architectures, answering the question, which is faster?

1 Introduction

When asked why they selected the bit serial or word parallel approach to build-
ing parallel computers, architects of each design style have given the same an-
swer, "To best utilize the available memory bandwidth." Both positions cannot
be right, of course, unless it doesn't matter. But considering the vehemence with
which the proponents advocate each choice, the conventional wisdom seems to
be that it does make a difference. This paper inquires into the question, Are
bit serial or word parallel computers faster?

Implied in the question is the added condition of, ceieris paribus - every-
thing else being equal. Such a condition is necessary because without it, any
answer to the question could be achieved simply by controlling factors such
as clock speed, amount of hardware, memory latency, technology, instruction
repertoire, target programs, etc., and there are already innumerable examples
of such apples-and-oranges machine comparisons.

But the ceteris paribus condition shouldn't be too quickly embraced because
controlling these factors is precisely what the task of computer design is all

*Supported in part by DARPA Contract N00014-88-K-0453. Electronic mail addres
samho~cs.washington.edu or snyderzcs.washington.edu. Telephone 206-543-9265.

1

about. There is little benefit in an analysis that obscures the specific advantages
of the two types of design by setting all factors equal. For example, if either bit
serial or word parallel processors permit a faster clock rate than is achievable
by the other, then postulating machines with equal clock rates excludes these
faster machines from consideration. Thus, the analysis requires some care to
produce an apples-and-apples comparison and at the same time respect the
special properties of the bit serial and word parallel processors.

What is known about the benefits of each style? Though there have been
some analyses purporting to demonstrate the superiority of bit serial [Hockney
and Jesshope 1981) and word parallel [Danielsson 1983] architectures, they are
inadequate [Yang 1987]: They are applied only to pipelined uniprocessors and
thus ignore considerations peculiar to parallel computers, they are limited to
specific examples rather than general computations, and they have produced
apparently contradictory results.

In the absence of a definitive analysis, proponents have offered informal
reasons to prefer one style over the other.

Several benefits are claimed for the bit serial design. Hockney and Jesshope
[1981] argue in effect that there is "less depth" to circuits that process data
serially. For example, in a bit serial add, the carry is simply accumulated as
the sum is being formed, while in a word parallel add, carry propagation delays
the completion of the computation. Bit serial machines can operate on small
data values more efficiently since they avoid packing and unpacking overhead
[Hillis 1985, Yang 1987]. They can implement operations more selectively; for
example, the "radix" approach to finding the maximum of numbers stored I per
processor tests the bits in most significant to least significant bit order, masking
processors that fail to have a bit set. Finally, transfer of data from memory can
be pipelined, covering memory access latency.

Word parallel machines also have benefits. With more data, parallelism can
be exploited in the processor when executing the basic instruction operations;
this means that during the processing step, which is overlapped with memory
operations and whose duration is determined by the time for memory operations,
more work can be completed [Danielsson 1983]; for example parallel multipliers
can execute multiply in one instruction time. This has a secondary conse-
quence of providing an opportunity to use more hardware within the processor
element itself; besides a specialized multiplier, floating point circuitry and CISC
level instructions are possible. Word-size transmission is a more direct way to
implement instruction and address processing, and therefore more appropriate
for MIMD computers. Finally, caches are practical for word parallel processors
and these can reduce latency in memory reference.

There are, no doubt, other features that can be exploited by bit serial and
word parallel computers, but finding them is not the work for the present study.
Rather, the problem is to understand how each feature improves the perfor-
mance of the machine for which it is advocated, and whether there are features
available to the competitive architecture that offset this advantage. For this

2

Processors Memories

Figure 1: Connection between processors and memories

problem, a model of parallel computation is needed.

2 The Model

The approach to the analysis is as follows. A simple model based on a half
dozen parameters will be developed first, This model, though overly simplified,
will permit a direct comparison between bit serial and word parallel machines.
Then, some of the special features noted above will be incorporated into the
analysis. Not all of the features mentioned will be analyzed individually or in
groups, but the process is started and the methodology is illustrated.

The computational model focuses on the connection between the processors
and the memories, as shown in Figure 1.

2.1 Quantitative Units.

Bit serial and word parallel are the extreme points of a range of data path
widths and it is important to include the whole range in the analysis. The
data path width, b, is the number of bits transmitted simultaneously between
a processor and memory in a memory reference. For Yon Neumann computers
the concept is well defined; for parallel computers the concept applies to the
processor elements, all of which are assumed to have the same width. Thus, for
example, b = 32 for the Motorola 68020 (Motorola 1984] and the RP3 [Pfister
et al. 1985], b = 16 for the Cosmic Cube (Seitz 1985], b = 8 for the Pringle
[Kapauan et al. 1984], b = 1 for the MPP [Batcher 1980].

Each simultaneous transmission between the processor and memory will be
called a half-step. Time will measured by the number of steps, where a step
consists of two half-steps. We make this doubling so that, in one step, the
processor can transmit both an address and a value to or from the memory.

3

In actual processors. this practice is quite common. Of course, many so-called
32-bit processors actually have 64 wires leading to the memory, with 32 lines
dedicated to each of the address and value. These processors, with twice the
bandwidth, get twice the information transmitted per unit time and so must be
scaled accordingly.

The data path width constrains the rate at which a processor fetches data
from memory, and symmetrically, the rate at which values are stored. It also
constrains the rate at which addresses can be presented to memory in most cases.
The case where it does not is when every processor references the same memory
location, i.e. the Dim case in the parlance of the Synchronous Taxonomy [Snyder
19881, and this one address can be transmitted from the controller by a broadcast
network. Otherwise, the address is assumed to be transmitted across the same
or an equivalent path as the data and so be constrained by the path width 6.

Notice that there are no assumptions about the architecture of the parallel
computer or the memory system. Thus, the memory might be local to the
processor as in a multicomputer or it could be a global, shared memory as in a
dancehall architecture.

Based on remarks in the Introduction stating that MIMD processing benefits
from word parallel implementations, it might appear that bit serial is being
discriminated against by the assumption that both addressing and data are
constrained by b, but it is not. First, only the advantage of being "more direct"
was claimed for word parallel and indeed the claim cannot be too strongly made
since there are bit serial machines such as the CM2 (TMC 1987] permitting
processors to perform independent addressing. Second, the results are little
changed by ignoring the role of addressing, as explained later in the discussion
of the Dim case.

The data path width will in most cases be different from the word size.
The word size, w, is the number of bits used to represent standard numerical
quantities and addresses. Even though programs often process data that could
be represented with fewer bits, general purpose computation does not usually
exploit this fact. Similarly, machines often have less physical memory than their
address space would permit, and even when they have that much, programs often
process fewer data items than 2'. Though these features would permit smaller
addresses, the advantage is not usually exploited in general purpose computation
and indeed "full addresses" are needed because of other encodings. Accordingly,
it will be assumed that all data and address transmissions between processors
and memory are for w size quantities. The specific benefits of operating on
small data, which by the introductory remarks favors bit serial machines, will
be considered later.

2.2 Computations

Informally, a computation is described by the reference behavior occurring on
the data path between processors and memory. This activity may take the form

4

of addresses presented to memory for fetching data or, if appropriate, fetching
instructions, or it could be an address/value pair to be stored in memory. Thus,
with each value there is an associated address, and so this will be the primitive
unit of the model.

A reference is an ordered pair of nonnegative integers', (a, v), where a is
called the address and v is called the value. A thread is an ordered pair,
(id, s1s 2 ... Sn), where id is called the identifier and 8182 ... s is a finite se-
quence of references called the reference sequence. (This usage borrows from
analogous concepts in the Synchronous Taxonomy (Snyder 19881.) A thread is
called a w-thread if for each reference (a, v) of the thread, a < 2' and v < 2",
i.e. each address and value can be represented in a word.

A computation task is a set of threads with distinct identifiers; for conve-
nience the identifiers of a computation task T will be taken to be the integers
1 to ITI. A computation is said to be a w-computation task if all of its threads
are w-threads.

The computation task defines the set of processes (threads) to be performed
by a parallel computer and each thread gives the sequence of memory operations,
address/value pairs, that must be performed to implement the process. No
operations are specified since they are largely irrelevant to the present analysis.
Notice that the model is idealized in other ways. For example, the fact that
the thread is specified by the sequence of the memory operations independent
of the execution ignores such dynamic effects as a process busy-waiting on a
semaphore. Such inaccuracies can be ignored provided they affect both wide
and narrow machines analogously.

A w-thread, (idl, s0s ... sn), is simulated by a u-thread, (id2 , tot. ... in),
where du = w for some integer d, if, for each i, si = (a, v) implies tdi = (as, V),Stdi+ a -1 v'-), andI

I= (av). t
di+(d-1) = (a' a

a=a'0 + a',2u + + a' -+ 2-)
a~ao at2 ... + _t (d- l)u

v=v o + v2 + . .. + _2

Clearly, the "simulated by" relation encapsulates the idea that w-sized quan-
tities are encoded in d units of u-size. The definition performs the encoding by
presenting the least significant unit first. This is clearly an inconsequential
decision and the other encodings are equivalent. For convenience, the term sim-
ulates refers to the operands in the opposite order, i.e. a u-thread simulates a
w-thread means the w-thread is simulated by the u-thread.

Proposition 1 For any positive integers w, u and d, such that w = ud, every
w-thread (idl, sos, .. sm) is simulated by some u-thread (id2 , t0 te ... t,). More-
over, md = n.

'There is no loss of generality in ignoring various number representations.

• . i l i I I5

Clearly, if u does not divide w, then w can be increased by an amount less than
u to achieve divisibility and the proposition's truth is unaffected.

Let P denote the number of processors in a parallel computer. A w-execution
stream, E. for a w-computation task T is a finite sequence of P-tuples, p1 p2 ... Ph
called cycles, where each cycle is of the form ((idl, refl),...., (idp, refp)), where
id, is a thread identifier from T and refi is a reference pair from thread idi. It
is further required that within each cycle the thread identifiers are distinct, i.e.
idi 4 idi, that for each thread (idi, sos,... s,m) each reference s8 appears once
in an execution stream, i.e. there exists a k such that (idi, sj) is in Pk, and the
references appear in order, i.e. if sj+l is in pl, k < I. The execution of a cycle is
a step, so the time to execute an execution stream is n. The time of execution
of the reference sj is the time k of the cycle in which it appears. The concept
to "simulate" extends to execution streams in the obvious way.

Notice that although the intuition of the model is that the first element of the
cycle is the reference executed by the first processor, the second element is the
reference executed by the second processor, etc., the positional order within the
P-tuple is irrelevant; uniformly interchanging the ih and jt1h elements of a cycle
anywhere in the execution stream will be regarded as an equivalent execution
stream. Thus, without loss of generality, we will speak of the execution sequence
and refer to some canonical representative. Even with this consolidation, there
are many permissible execution streams for a given w-computation with more
than P threads.

A thread (id, so, s 1 ,..., s) in execution sequence E, in which so E p. and
sm E Pz, is said to be active during cycle i provided, a < i < z. The times at
which a thread begins, ends, or executes are a consequence of the algorithm's
data dependencies, the compiler, the scheduler, and various dynamic features
of the execution, which are beyond the scope of the present model.

The total number of active threads at time t of execution stream E is known
as the parallelism I,. Clearly, this number varies, throughout the execution
stream, as threads start and stop. However, it can always be determined in
linear time in the length of the stream by counting the threads as they do so.

2.3 Latency

An execution stream has latency L if it satisfies the condition that for any two
references from the same thread, the latter reference follows the former by at

least L cycles. This modifies the sequentiality condition to read that given si

and sj+, two adjacent references from thread idi: with sj in pk, and sj+l in

pl, then k + L < I.
It is implicit in this definition of latency that we are hiding latency by pipelin-

ing references. In fact, if we issue a large enough number of references from
different threads, the latency will have no effect on the length of the execution
stream.

6

On the other hand, to achieve a certai-, latency it may mean that it is not

possible to schedule a full P-tuple for some cycle. If this is the case, it will be
necessary to add null references to the cycle. A null reference is defined to be
the pair (0, 0) from a fictitious null thread numbered zero. The null thread is

also exempt from the latency requirements, and may appear as often or as few
times in the execution stream as is necessary.

If a particular cycle contains no null references, that cycle will be considered
saturated.

By the above proposition, it is clear that any w execution stream can be
simulated by some b-execution stream with time dilated by w/b. To account
for differences in performance between machines, such as clock rate, the time
dilation will be corrected by a constant C to be Cw/b, where C = 1 when the
machines have equal memory reference rates.

3 Tradeoff Theorems

3.1 Saturation

The first theorem states that the point at which saturation occurs is at the same
level of parallelism for any machine regardless of the number of processors and

the data path width, so long as their product is held constant.
The crux of this argument is that the wider a processor is, the faster it

executes each reference, but since the latency remains the same, the more ref-

erences it must pipeline in order to hide that latency. On the other hand, while

the narrower processor needs to pipeline fewer references, there are proportion-
ately more processors, each of which needs its own queue of threads. These two

requirements for parallelism balance each other, so the total parallelism required
is the same; one processor of a given width requires twice as many threads to

remain saturated as each of two processors of half that width.
The first part of the bound assumes that if there is sufficient parallelism, the

machine is capable of scheduling any thread to any processor. This is essentially

equivalent to stating that thread migrations can be performed at zero cost. The

latter part follows directly from the delays required by the definition of latency.

Theorem 1 A saturated execution stream can always be constructed if the level

of parallelism is at least PbL/wC. Also, no saturated execution streams exist if

the level of parallelism is less than PbL/wC

7

Proof:
Part 1: Saturation possible if II, PbL/wC. Consider the sequence

(< ,s I, I), . (P,a ,01
((1,81,2), (P, SP,2))

E = ((1, .1.b).(PspcW/b))

((P+ 1,sp+,i),...,(2P, s 2pI))

This sequence divides the active threads among the processors by associating
thread id with the id mod P element of a cycle. Then a group of P w-references
is simulated, for the corresponding Cw/b cycles of the b-stream. Now, each
processor cf the tuple will have at least bL/wC threads associated with it. Thus,
when the last active thread is reached, at least the latency will have elapsed,
since the time elapsed is IIcCw/b > L. At this point, it is now safe to resume
execution with the next references of the first P threads without violation of
the constraint on latency.

Part 2: No saturation iflt < PbL/wC. Consider a sequence of L successive
saturated cycles in the execution stream. By the definition of L, none of the
references in the elements of this sequence may be from the same thread. There
are PL such references since there are P references for each of L cycles. Finally,
each w-reference is simulated in Cw/b b-references. Thus, there must be at least
PbL/wC threads active in this time. 0

3.2 Simulation

The next theorem states that one execution stream can simulate another in real
time, as long as they have the same product of data path width and number of
processors. The reasoning behind this theorem is that by the preceding theorem,
they saturate at the same level. The former stream can go no further than to
the point of its saturation, and this is always within the limits of saturation of
the latter stream.

Theorem 2 Given a b1 -execulion stream, El, for some w-computation task,
there exists for each value of b2 , a b2 -ezecution stream E 2 that simulates E1
such that if their values of L, C, and w are equal, and the products Pb are
equal, then the length of E2 is within the latency of the original length. That is,
JE21 <5 IE, I + L.

Proof.
We use induction on the time, taken in groups of L cycles, to construct an

execution stream E2 that always simulates at least as many w-references as El.

8

Basis: Initially, neither execution stream contains any references at time
zero, so they have not simulated any w-references, either.

Induction Hypothesis: At a given time t, divisible by L, the two execution
streams simulate an equal number of w-references.

We now prove that in the succeeding time interval of size L, they simulate
an equal number of w-references.

Induction step: El contains some number r of w-references in the cycles t
to t + L. But, since these r references are all within time L of each other, they
must all be from distinct threads. Thus, IHt _> r. On the other hand, there can
be no more than PbL/wC references found in this interval, since that is the
point of saturation, so r < PbL/wC. Thus r < min(PbL/wC, Hlt). But, by the
construction found in the saturation theorem, we can find an execution stream
E2 which can execute r references in time L.

Thus, the latter stream can simulate all activities of the former performed
in time L, in the same time L. In particular, the complete computation can be
simulated in time L[t/L1, which is within L of the original time. 0

A corollary to this result is that the optimal performance of both bit se-
rial and word parallel machines is within L of each other, when simulating w-
computatioa tasks, since each can simulate the optimal algorithm of the other.

Corollary 1 Given two such machines M1 and M2 , the optimal time on MI,
T(E*) is within L of the optimal time on M2 , T(E*). In other words, IT(Ef) -
T(E')I < L.

Proof: Let E, be the execution stream produced by simulating E2 on Mi
using the theorem above. Similarly, let E2 be the simulation of Ef on M2 . Then
T(Er) < T(El) T(Er)+ L and T(E2) T(E2) < T(Ef)+ L by the theorem
above. This shows that IT(E0) - T(E2)1 <L. 0

4 Further Cases

4.1 SIMD Machines

In an SIMD machine, there is only one stream of instructions, but there are
many data streams. The model doeti not distinguish in any way the purpose of
a particular reference, merely its existence. Thus, the SIMD nature of a machine
does not, a priori, change the results preseated above.

The SIMD structure does, however, permit more variation in the generation
of data addresses. In the one case of the D.m structure, as is found on the CM-
2 [TMC 1987] and Illiac IV [Bouknight et al. 1972], each processing element
generates its own address, through a port of size b. In this case, the arguments
of the two preceding theorems can be carried through entirely unchanged, save
for noting that the reference streams are now data reference streams.

9

The alternative, the Di, structure, only permits one global address, to
which all processing elements must direct their accesses. In this case, the ad-
dresses are no longer part of the reference, eliminating the address portion of the
half-cycle. On the other hand, the values transmitted continue to traverse the
data path. The effects of this are twofold. Firstly, the word size w is bounded
solely by the value, and not the address size. Since these quantities tend to be of
similar magnitude, this effect, is, in general, unlikely to be significant. Secondly,
one of the two half-cycles making up a cycle, the one associated with address
transmission, is now unnecessary. While this factor of two is not large, it is a
nontrivial time savings.

4.2 Small Latencies

So far, we have assumed the latency L to be a relatively long time, so that we
use pipelining to hide that latency. If, on the other hand, the latency is less than
the computation time, i.e. L < Cw/b, or bL/wC < 1, the computation time
becomes the dominant term. Conversely, this is equivalent to slow instruction
execution time, or a large value of C, since this affects the inequality similarly.

Under these conditions, we can return to our original definition of sequential
execution, since successive w-references will always be simulated Cw/b > L
steps apart, or long enough that latency will always be preserved.

In this case, saturation occurs when the parallelism is at least as large as
the number of processors, since there is no need to wait for latency. When
saturated, each processor completes simulation of one w-reference in time Cw/b.
Otherwise, in the same time, one w-reference is simulated for each of the active
threads. We use the same construction as the original saturation theorem.

The four cases of saturation and latency are summarized as follows:

Theorem 3 Given a computational task T, and an execution stream E, the
average rate at which references complete, which is the ratio of the number of
w-references in T to jEI, is no more than min(Pb/Cw, Hl/L, Htb/Cw).

Proof. Consider the four cases:

1. Latency bound, saturated. L >_ Cw/b and lit _ PbL/wC. In this case,
the rate is the saturated rate of b/Cw per processor or Pb/Cw.

2. Compute bound, saturated. L < Cw/b and H, > P. Here also, the
saturation rate is Pb/Cw.

3. Latency bound, unsaturated. L > Cw/b and [It < PbL/wC. In this case,
we can make one reference per thread before waiting for the latency. Thus,
the rate is H11L.

4. Compute bound, unsaturated. L < Cw/b and lit < P. In this case, we
can only compute at full speed on each active thread, leaving the remaining
processors idle. The rate is then Iltb/Cw. 0

10

4.3 Small word size

We now consider the case where w < b. In this case, some of the bits accessed in
the data path will never contain any information relevant to the computation.
One such case is the radix algorithm for computing the maximum, by examining
each bit in order, from most significant to least significant. In this case, the data
portion of each reference need only contain one bit.

Before we continue, it is necessary to point out that the word size w is the
maximum of the address and data sizes. Thus, the word size will still be large
if the addresses involved are large, even if the data values are only a single bit
wide.

For instance, in the Connection Machine [TMC 1987], each of the processing
elements operates on single-bit data, but the addresses are still of full size. In
this mode, the processing elements may be spending as many as 32 cycles to
generate the address for a single bit.

This is the analogue of the earlier wide-word Dim case, where we are now
reducing the number of value half-cycles, while leaving the address half-cycles
unchanged. Once again, the maximum savings are lirmted to one-half.

We can, nonetheless, combine both of these, in the form of a bit-serial (or
narrow-word) D1m computational task.

If w < b, there is no need to simulate the wide access with a sequence of
smaller accesses. Phrased another way, if w < 6, any w-thread is, a fortiori,
also a b-thread of the same length. In this case, the dilation of each reference
attributable to the simulation is merely the constant C, which, in most cases,
we take to be one.

Now, it is simple to determine whether the computation is latency or com-
put tion bound: the limiting factor is the larger of the two. In the compute
bound case, saturation continues to occur at parallelism equal to the number
of processors. When latency bound, each processor needs LIC references to
remain saturated, for a total parallelism requirement of PLIC.

We can summarize these results for w < b as showing that the perfor-
mance rate is min(P/C, 1 /L, l,/C). The combined result, for any combi-
nation of w, b, C, and L, is that the maximum performance is limited by
min(Pb/Cw, riH/L, II b/Cw, P/C, flt/C), which may also be written as
min(min(P, [1t) min(b/w, 1)/C, fl 1 /L).

Theorem 4 The performance of an execution stream is limited by the least of
the following three factors:

" Simulation. No benefit arises from changing the data path si:e if it is
already larger than the word si:e.

" Parallelism. ,Vo benefit arises from processors beyond the number of active
threads in the computation.

11

* Latency. No benefit arises from any other change if all octave threads are
already executing once per latency tame.

The machine can execute at most min(min(P, r,) min(b/w, I)/C, II,/L) ref-
erences per cycle.

Proof: The theorem is a summary of the previous discussion. 0

5 References

Bouknight et al. 1972 WV. J1. Bouknight, S. A. Denenberg, D. E. McIntyre,
A. H. -Samek and D. L. Slotnick, "The Illiac IV System," Proceedings of

IEEE 60(4): 369-388.

Botcher 1980 Kenneth E. Batcher, "Design of a Massively Parallel Proces-

sor," Transactions on Cornputers, C-29(9): 836-840, IEEE.

Danielsson 1983 P.E. Danjeisson, " Algorithm-d riven architecture for paral-
lel image processing," in Computer Architectures for Spatially Distributed
Data, Springer-Verlag, 1-17.

Hillis 1985 W. Daniel Hillis, The Connection Machine, MIT Press.

Hockney and Jesshope 1981 R.W. Hockney and C.R. Jesshope. Parallel
Computers, Adam Hilger.

Kapauan et al. 1984 A. Kapauan, J.T. Field, D.B. Gannon, L. Snyder, "The
Pringle Parallel Computer." The 11th A4nnual Inter-national Symposium
on Computer Architecture, 12-21.

Motorola 1984 Motorola, MC68020 Microprocessor Users'.1Manual, Prentice-
Hall.

Pfister et al. G. Pfister, W. Barntley, D. George, S. Harvey, W. Kleinfelder,
K. McAulfiffe, E. Melton, V. Norton, S. Weiss. "The IBM Research Paral-
lel Processor Prototype (RP3): Introduction and Architecture," Proceed-

ings of the 1985 International Conference on Parallel Processing, IEEE,
pp. 764-771.

Seitz 1985 C. Seitz. "The Cosmic Cube," Communications of the A4CM, 28(l):
22-33.

Snyder 1988 L. Snyder, "A Taxonomy of Synchronous Parallel Machines."
Proceedings of the 1988 International Conference on Parallel Processing,
Penn State. pp.281-2 8 5 .

TMC 1987 Thinking Machines Corporation. Connection Machine Model CM-

2 Technical Summary. Technical report F1A87-4.

Yang 1987 Chyan Yang, An Investigation of Multigauge Architectures, PhD
dissertation. University of Washington TR 87-10-05.

Wirelisp: Graphical Programs for Digital System Design

Carl Ebeling and Zhanbing Wu

Department of Computer Science

University of Washington

Seattle, WA 98195

Abstract

The design of large, complex digital systems places an enormous burden on the systems archi-

tect. This is partially due to the crude tools still employed to specify, evaluate and implement large

digital systems. In this paper we describe a language for describing systems that combines the

immediacy and transparency of visual description with the expressiveness and generality of proce-

dural description. These two forms of description are closely intertwined by embedding Wirelisp in

Lisp and providing graphical constructs for most Wirelisp expressions. The power and flexibility

of Wirelisp reduces the complexity of circuit specifications to a level consistent with the inherent

complexity of the system being described.

Wirelisp is a language for representing the structure of a system as the hierarchical composition

of elements, from primitive elements to complex modules. The concept underlying Wirelisp is that

each device in the description is a procedure that understand how to construct instances of that

device. Thus a specification may be implemented in a variety of ways depending on the application

by simply changing how this construction is done. Arbitrary information can be included in the

specification and used during this process.
Wirelisp is intended to be used to describe the structure of a system. However, some parts

of a system are ill-structured and are better described behaviorally, that is, by describing the

relationship between input and output. Wirelisp allows such modules to be abstracted by means

of their behavioral description, but the implementation of these modules must map the behavior

into structure, a process left to synthesis tools external to Wirelisp. Wirelisp provides a framework

within which behavioral information can be specified, evaluated in the context of the entire system

and then implemented.

Wirelisp has been implemented using a generic drawing program along with an interpreter

written in Lisp.

1 Introduction

Wirelisp is a language for describing the structure of digital systems as the hierarchical composition

of elements. It is not the intent of Wirelisp to describe the behavior of a system, except indirectly

as implied by the composition of primitive elements whose individual behavior is well-defined. In

practice, systems are divided into modules that have obvious structure and modules that are better

described by specifying their input-output behavior. Wirelisp allows such modules to reference a

behavioral description, but does not support this type of description. At some point in the imple-

mentation, Wirelisp expects behavioral descriptions to be fully mapped to a structural description

in Wirelisp. However, Wirelisp provides a hierarchical framework within which both the structure

and behavior of a system can be described.

The benefits of hierarchy in the design of complex systems are well-known. It extends the

designer's grasp by allowing him to abstract away the details at lower levels in the description. It

reduces the interaction of system components by promoting modularity. And it reduces the size of

a description by reducing the amount of repetitive and redundant information.

The structure of a system refers to the relationship between the elements of the system, both

at the same level of hierarchy and between levels of hierarchy. That is, the structure specifies the

connection between elements at the same level in the hierarchy, and the composition of elements

from elements at the next lower level. These relationships are best represented graphically. It

is much easier to draw the relationship between several items than describe it with words, and

much easier to understand a relationship by seeing it, rather than reading a description of it. Thus

circuits are typically described pictorally using schematics and there are today many schematic

editors for describing circuits.

On the other hand, graphical descriptions lack flexibility and generality. Repetitive circuits are

cumbersome to represent graphically, and similar but different circuits must be drawn separately,

even if the differences between them are small. Graphical representations are also very "brittle".

Simple changes in the system parameters can require very difficult and time-consuming modifi-

cations to the graphical specification. This problem is perhaps most evident in graphical layout

systems. Graphical descriptions simply lack the expressive power to describe highly repetitive or

parameterized circuits in a succinct way.

Procedural descriptions, by contrast, are much more powerful and flexible. Iterative constructs

can be used to generate repetitive circuits. Conditionals can be used to modify the construction of

a circuit based on parameters or iteration number. Even recursion is useful for describing certain

• .i i I I I1

types of circuits[5]. A procedural description, then, can represent an entire family of parameterizPd

circuits, while a graphical description represents only a single instance.

Procedural descriptions, however, are difficult to write, and even harder to understand once

written. Because of this they are typically used in a specify-evaluate-modify loop using some

sort of visual feedback to inform the user of the structure implied by the specification. However,

the power and generality of procedural descriptions often make up for their inpenetrability, and

procedural descriptions have been found useful for many different tasks[4, 8).

Wirelisp incorporates the best of both approaches, allowing the user to interact graphically with

the specification when describing relationships between elements while using procedural descriptions

where flexibility and generality are required. Instead of merely allowing the user to "escape"

to a programming language or providing a simple subset of procedural constructs, Wirelisp is

embedded in Lisp, giving the designer the full power of a programming language. The designer

is free to choose which type of description to use at each point in a design. Lisp expressions can

be embedded in graphic descriptions and graphic descriptions embedded in Lisp expressions. This

allows descriptions that are highly expressive, yet easily specified and understood.

Wirelisp programs are executed to produce a complete circuit description of some form. This

might be a netlist suitable for board design, input to a simulator, or a description used to drive a

layout generator. The actual form of the output representation is determined by the side effects

generated by device procedures. For example, if each primitive device writes a description of itself

to the output file along with the names of wires to which it connected, the result will be a flat

netlist for the circuit. Libraries containing the procedures for the primitive devices are provided

for common technologies such as CMOS. However, the user may write these procedures to effect

whatever output is required.

2 Wirelisp Overview

In Wirelisp each device, or module, is a procedure. A device is instantiated by a call on this

procedure. Because a device procedure may have parameters, it actually defines a family of devices,

instances of which are produced by invoking the procedure with particular parameter assignments.

One may view device procedures as entities that know how to construct instances of themselves.

Devices are either composite or leaf devices. Composite devices are comprised of other devices

while leaf devices are primitive devices which have no components. Instances of composite devices

are formed by invoking the device procedures of its components and connecting the resulting in-

2

stances together. Devices are connected together via signal wires attached to connection points on

the devices. Connection points, which correspond to device input and output ports, are represented

by signal parameters. When a device is instantiated, the names of the wires to which it is connected

are passed as signal parameters to the device procedure.

Signals correspond to wires and are objects in their own right. Signals can be defined to have

structure, that is, composed hierarchically of other signals. Both homogenous structures (busses)

and heterogenous structures (records) can be specified. The use of structured signals increases the

level of abstraction used in a description and decreases the size of the graphical description by

bundling several related signals into one signal.

Wirelisp device procedures are drawn rather than written. A composite device is defined by

giving the drawing symbol for the device, which contains both signal and general parameters, and

all the component devices and their interconnection. Behind this graphical representation lies a

Lisp procedure. Lisp expressions used in the drawing appear in this procedure verbatim and are

evaluated when the device procedure is invoked. An example of a device definition is given for a

device called treecomp in Figure 1. This device compares two N-bit numbers via a recursive divide

and conquer approach.

Leaf devices correspond to the primitive devices in whatever technology is being used. When a

hierarchical circuit description is fully elaborated, all that remains is the entire set of interconnected

leaf devices. This flat circuit description is the most common result of executing a Wirelisp program,

and is produced by programming each primitive device procedure to write a description of an

instance of itself to the output file. For common technologies and output file formats, these primitive

device procedures would be in a library. Although this is the most common result of executing

Wirelisp programs, the user is free to redefine the actions taken by both primitive and composite

devices to produce other types of output.

3 Related Work

The idea of using a programming language to represent circuits has been used previously, notably

the use of Lisp in netlist [11] and DPL[4]. Wirelisp is similar to netlist in its use of procedure
hierarchy and its definition of device connections via parameters. However, netlist lacks any graph-

ical representation, has only a very primitive notion of signal structure that prevents information

hiding, and is very difficult to target to different applications.

The use of hierarchy in the description of circuits has been used for a long time. The Stanford

3

(access A B (BUS 1 NJ)

(local LTl EQI GTI LT2 E02 GT2)

(if (- N 1) (simplel
(let M(UI N 2))) [dividem)

(simpel

ILT - !A.M *B.M
:EQ - !GT * !LT

(divide)
Ihigh order half Ilow order half

tf eop tec!p
A EQ Af: I C EQcc

±B8N<14> CT 8 <N>)GT Z t
0(- N I) <1

=9zD-44

iGT - GT2 - (EQ2 * TI)
GND EQ - EQi * EQ2

iLT - !E0 !GT

Figure 1: A lWirelisp Drawing

4

University Drawing System (SUDS) was the first widely used drawing system that incorporated

the idea of macros to represent entire subcircuits. Most drawing systems today allow hierarchical

specification; however, they all share the relative inflexibility of graphical descriptions.

Both graphically and procedurally based VLSI layout systems have been used, but little has
been done to incorporate both types of description in the same specification. Some systems such

as Mocha Chip[9) and WIN[1) use both types of description in the specification of chip layout, but

they cannot be intermixed at a fine-grained level.

Xerox PARC has recently produced a circuit specification system that incorporates both graph-

ics and programs[2, 3] and is similar in philosophy to Wirelisp. However, Wirelisp intertwines

the graphical and procedural constructs more closely which yields specifications that are more

descriptive and self-apparent.

4 Device Definition and Instantiation

Devices are defined by Wirelisp procedures. Composite devices describe their component devices

and their interconnection by invoking the procedures corresponding to those devices with the ap-

propriate parameters. Primitive devices do not invoke any devices but perform actions such as

writing the appropriate description of that device to an output file.

A device procedure is typically defined by a single drawing as in the example of Figure 1. The
device symbol being defined is placed at the top of the page and corresponds to the procedure head.

The interconnected component devices are placed below it and form the body of the procedure.

The device symbol contains named connection points for the input/output signals of the device.

These correspond to the signal parameters of the device. Pins are used to mark the connection

points in the device symbol, and the device definition provides the parameter name for each pin.
General parameters, both mandatory and optional, are simply listed along with the device symbol

enclosed by the special chararacters < and >.

The device symbols appearing in the procedure body each corresponds to a procedure call. The
names of the wires connecting these symbols via connection points are passed as the corresponding

actual parameters to these procedure calls. The actual general parameters for device instances are

listed next to the device symbol. Optional parameters are named; that is, they are not specified by

position as are mandatory parameters, but as a (name value) pair. Device instances may specify

optional parameters that do not appear in the device definition, in which case they are ignored.

While this may not appear to make sense, it allows the designer to attach arbitrary information to

5

a device instance. Only if this information is understood by the device definition is it used. For

example, the designer can include layout information which is ignored by a definition that generates

nethst.

The signal wires appearing in the procedure body must either be a formal parameter, i.e. an

input or output signal, or be declared as a local signal. If a wire does not have a name, then it

is automatically declared as a local signal and given an arbitrarily derived name. Defining signals

locally allows irrelevant information to be hidden from the surrounding context. Signal wires are

represented as simple lines in the drawing and are named by closely placed text. Different wires

with the same name are considered to be the same wire, and naming a wire more than once creates

alias names for that wire.

Lisp expressions may be used anywhere in a drawing and are included in the device procedure as

they appear in the drawing. The most commonly used Lisp expressions are conditionals, loops and

arithmetic operations; however, any Lisp function can be used, including those defined by the user.

Conversely, circuit drawings may be used within- Lisp expressions. This is done by enclosing the

circuit drawing with a named rectangle and referencing this name in the Lisp expression. Figure 1

contains an example of this. The if conditional is used to generate one of two circuits depending

on the size of the input values.

Lisp expressions are evaluated in the order in which they appear on the page, although typically

their order is irrelevant since circuit drawings are declarative in nature. The closely entwined

relationship between graphics and Lisp expressions means that there are no ad hoc features needed

to fill gaps in the expressiveness of the language. The entire functionality of Lisp is available just

beneath the surface whenever it is needed.

Branch points can occur in the hierarchy if alternative implementations exist for a device.

Design alternatives are easily implemented in Wirelisp by using the analog of a case statement in

the device definition that chooses the implementation based on a global variable. For example,

one might have a style variable that is assigned the value simulation or netlist depending on

whether the output is to be used by a simulator or is simply a fiat wirelist. In the case of simulation,

a composite device may be implemented as a functional model while in a netlist, its details would

be fleshed out.

The result of executing a Wirelisp program can, in principle, be defined by the user. However,

the user will typically use library procedures for a particular technology and a standard output

representation of the circuit. The most common use of Wirelisp produces a fiat representation of

6

the circuit containing only primitive devices connected as specified in the Wirelisp program. For

example, at the University of Washington we use Wirelisp to design CMOS circuits and produce

output in standard SIM format. However, the Wirelisp program might just as well build an in-core

representation of the circuit or make entries directly into a design database like Berkeley OCT[7].

The flexibility of a procedurally based description allows the general Wirelisp framework to be used

for a wide variety of applications with only a small amount of additional work.

5 Structured Signals

At higher levels of abstraction in a hierarchical description, modules typically operate on values

that are more complex than simple signals. Examples include busses, numbers, and control words.

We refer to a collection of related signals generically as a bundle. A bundle comprises an ordered

set of signals which can be referenced collectively by the name of the bundle, or individually via an

access mechanism. Bundles are created via a local declaration which declares the bundle name, the

component names, and creates the physical structure of the signal. Alternatively, bundles can be

created dynamically by binding a list of already declared signals using the bundle operator. This

only creates a physical structure without declaring any new signal names.

Bundles are allowed to have hierarchical structure. That is, a bundle can be defined recursively:

1. A simple signal is a bundle.

2. An ordered set of bundles is a bundle.

A hierarchically structured bundle is then an ordered tree in which each leaf node is a simple signal

and each interior node is a structured bundle.

Wirelisp provides two different ways to access structured signals: records and busses, corre-

sponding to records and arrays in conventional languages. Records use named selectors, which

are compile-time constants, to access elements in a bundle while busses use indices, which may be

variable. Wirelisp separates the physical structure of a signal from the access mechanism used to

access its components. Thus a structured signal may be referenced as a bus in one device and a

record in another. Typically, however, collections of homogenous signals are defined as busses and

collections of heterogenous signals as records.

Access structures may be defined either textually or graphically as shown in Figure 2 according

to the designer's taste. Access structures are used in a straightforward way to access any node

T

CONTROL SRB

1

DATA

(sysBus (SN (CONTROL (SN R/W STROBE ACK)) (CLK (BUS 1 2 (SN H L)))

(ADDRESS (BUS 0 23)

(DATA (BUS 1 32))))

Figure 2: Graphical and textual declarations of structured signals.

in the structure tree. For example, sysBus.control refers to the three signals R/W, STROBE, and

ACK, sysBus.ADDRESS[231 refers to the high-order address bit, and CLK[1] refers to both assert

high and low signals of the first phase of a clock.

A design typically uses only a few different access structures, one for each type of bundle used in
the design. If every device were required to define the access structure, it would be difficult to keep

structure declarations consistent. It would also require substantial effort to change the declarations

when bundle structures are changed or refined. Wirelisp implements global structure types which

allow common structure definitions to be defined once and then used throughout the design. By

using these global definitions, every device is assured of having a consistent view of the world.

When a bundle is passed as a parameter to a device, an access structure must defined in order

to access its components. This access structure tree must match the physical structure tree in the

following recursive sense, starting at the root:

1. Two interior nodes match if they have the same number of children.

2. An access leaf node may match an physical interior node.

3. An access leaf node matches a physical leaf node.

This extends the abstraction inherent in structured signals by allowing devices to access only that

part of the signal they use, leaving the rest hidden. Wirelisp dynamically checks to make sure that

the structure used to access a bundle matches the actual physical structure of that bundle.

Bundle declarations and expressions often contain long lists of similar names. Wirelisp provides

a simple mechanism, called the iterator, for describing such lists of names succinctly. Iterators are

8

merely syntactic shorthand used to reduce the amount of repetitive information in a drawing. An

iterator occuring in a name causes that name to be expanded into a list of names according to

the iterator. An iterator has the form nl:n2, where nL and n2 are maximal substrings of digits

appearing in the name string. For example, datal6:31H contains the iterator 16:31. The list of

names generated consists of one name for each value in the range [ni... n2) where the iterator

is replaced by its value. For example, data16:31H expands to the list data6W data7 dataIS/

... data31H.

An arbitrary number of iterators may appear in a name string, as in bitO :7-0:3. This forms

a nested loop, with the outermost loop to the left. This example would expand to the list bit0-0

bit0-1 ... bit7-3. If necessary, an iteration increment can be specified by an iterator in the

form nl:n2:n3 where n3 is the increment. Also, n1 may be greater than n2, in which case the

increment is assumed to be negative.

6 Naming Issues

All signals and device instances in a circuit are distinguished by assigning them unique names.

These names then appear in the output when signals or device instances are referenced. The

user has two choices for the form of these names: hierarchical or abbreviated. Hierarchical names

indicate precisely where in the description hierarchy a signal was declared or a device instance

created.

Device instance names are optional parameters which default automatically to the device name

plus a small integer that distinguishes devices of the same type within one instance. This instance

name is unique only in the context of the parent instance. A unique, hierarchical instance name is

created by taking the pathname comprising all instance names from the root to the instance. That

is,

1. The pathname for the root device is /'.

2. The pathname for all other devices is 'parent-pathname/instance-name'.

Hierarchical signal names are formed by concatenating the pathname of the instance in which the

signal was declared with the signal name.

For large circuit these hierarchical names can become very long, making the output files un-

reasonably long. In this case the designer may choose to use abbreviated names for signals and

9

instances which do not need to be observed in the output. Abbreviated names for instances and sig-

nals are formed by concatenating the simple signal or instance name with a globally unique integer.

For example, the slocal declaration is used to declare signal names that should be abbreviated.

7 Including Behavioral Information in Wirelisp

While much of the description of a digital system is structural, there are parts of the system

which have no obvious structure, but whose input-output behavior is well-understood. While

such parts must eventually be mapped into an implementation whose structure can be described

using Wirelisp, it is not the intention of Wirelisp to perform behavioral synthesis tasks except by

invoking other tools. But by having the behavioral part of the system integrated with the structural

description, the system can be designed, evaluated and implemented as a whole. For example, as

an architectural description is being evaluated using simulation, the description of the behavioral

modules can remain at the abstract behavioral level and simulated functionally.

This inclusion of behavioral information in a Wirelisp description is relatively straightforward.

A module is created with the appropriate input-output signals and with an implementation that

refers to the behavioral description, which may be in whatever form the user desires. For example,

this behavior may be given as a set of logic equations, a finite state machine description in a

high-level language, or a state diagram. The only requirement of Wirelisp is that this behavioral

description be transformed by some agent into a form compatible with the output description of the

rest of the circuit. For example, a PLA description might be translated into a model for simulation

or into a Wirelisp description of a PLA circuit implementation depending on a global style variable.

Following the view of devices as entities that know how to construct instances of themselves,

behavioral modules contain both a behavioral description and a method for constructing the ap-

propriate output description from that behavior. This may be as simple as compiling a FSM and

generating the PLA output or so complicated that the designer must intervene to generate the

corresponding structure description.

An example of a very simple version of behavioral description is the ability to use logic equations

in a drawing. We have extended Wirelisp to allow the inclusion of simple logic equations as

replacements for small collections of logic gates. For example. in Figure 1 the logic gates computing

EQ, GT, and LT could be replaced by logic equations describing the function they compute. This

has been implemented by a user Lisp function that converts a logic equation into a device that

implements that equation. While in principle logic or behavioral synthesis could be made part of

10

the Wirelisp environment, in practice it makes more sense to allow Wirelisp descriptions to take

advantage of the full range of tools available for this problem.

8 Physical Descriptions

Wirelisp describes only the topological structure of a system which, for some technologies, is in-

sufficient for implementation. Physical information is required in addition to the topological infor-

mation. The best example is custom VLSI chip layout where there are many ways to physically

implement the same logical circuit, but determining this information from the topological structure

is extremely difficult. Wirelisp is not intended as a layout description language; however, it allows

sufficient physical information to be added to a structural description to allow a backend layout

system to generate the chip layout. The amount of additional information required depends on the

sophistication of the backend system and the quality of the layout desired.

Physical design can be viewed hierarchically as well. Layout leaf cells are composed to build

larger modules which are themselves composed into still larger modules. Wirelisp allows the designer

to include the information to perform this type of physical design. Devices procedures corresponding

to the layout leaf cells refer to the layout, presumably generated using a layout editor, but possibly

generated automatically, for example as standard cells. Examples of layout leaf cells include register

cells, ALU bit-slice, shifters, memories and standard cell implementation of random logic. These

occur higher in the hierarchy than the primitive logical devices and thus a design will be instantiated

in different ways depending on the intended output.

The composition of layout modules is specified by describing the relative position of these

modules. This information can be given either graphically or textually depending on what is

appropriate. For example, devices can be placed in the drawing corresponding to their relationship

in the layout, or, if this makes the drawing awkward. their physical relationship can be describcd

textually.

Given this information in the Wirelisp description, the physical design system acts as a chip

assembler, composing the layout cells hierarchically according to the physical information in the

Wirelisp description. While this provides a front-end to the chip assembly task, it does not address

the difficult problem of designing the cells so that they fit together properly at all levels of the

hierarchy. In practice, cells within regular modules such as register files, memories and data paths

will be designed to fit by abutment. Modules are then wired automatically after being placed

according to the Wirelisp description.

11

Design, Drawing Drawinla wigs Device .etlisit

D igr n-riSimulation file
Ideas Editor nyr ocedures nterprete T Layout composition

Figure 3: Wirelisp Impementation

The hierarchy of the logical and physical description of a circuit are often different. For example,

a datapath might logically be described as the interconnection of an ALU, shifter, and latches, while

physically it would be viewed as the composition of several bit-slices. Wirelisp allows divergent

and reconvergent hierarchies through the use of case expressions based on style that direct the

implementation along differing paths.

We see Wirelisp as a way to implement module generators for a wide variety of structured

modules. Of course one wants more intelligent tools which can deduce the physical structure from

the topological structure, relying on the architect to have specified a design amenable to layout in

the plane. We believe that Wirelisp would be an appropriate language for describing the input to

such a silicon compilation system.

9 Wirelisp Implementation

There are a range of possible implementations of Wirelisp depending on how closely the drawings

and their interpretations are bound. We describe here the current implementation of Wirelisp

which uses a generic drawing program and an interpreter written in T Lisp[10]. Figure 3 shows the

flow of information from concept, to specification, to implementation.

Wirelisp drawings are made using DP[6], a generic drawing editor from Carnegie -Mellon Uni-

versity that runs on Sun and Microvax workstations. DP supports a variety of graphic objects

including lines, text, circles, arcs and spline curves. DP provides some help with circuit drawing

with respect to connecting lines used as wires, but otherwise does not understand the semantics

of circuit drawings. A backend program which does understand these semantics converts Wirelisp

drawings into Wirelisp procedures. The designer, however, only interacts with the circuit specifi-

cation via the drawings.

DP has a macro concept whereby a group of related objects can be bound into a single named

object called a symbol. Symbols in Wirelisp drawings correspond to devices, and connection points

12

within devices are represented by DP pins around the periphery of the device. Making a device

definition involves defining a symbol for the device, copying in the symbols of the component devices

from the drawings in which they are defined, and then connecting them using lines attached to their

pins.

DP allows the designer to move about in the hierarchy of a design by "subediting" devices.

This causes the current drawing to be suspended and replaced by the drawing for the device being

subedited. Exiting then causes the editing of the suspended drawing to be resumed. Subediting is

allowed to any depth.

The execution of Wirelisp procedures resulting from the analysis of the drawings is performed

by an interpreter written in T Lisp. This is done by entering the interpreter and giving it the name

of the root device. The interpreter simply executes the procedure for the root device. As subsequent

device procedures are called, drawing programs are automatically reanalyzed if they have changed

and device procedures are autoloaded. The current implementation executes Wirelisp programs

at the rate of about 200 devices/second for moderately complex CMOS circuits on a Sun 3. This

means that even large circuits with 100,000 transistors take only about 10 minutes to process.

10 Conclusion

Wirelisp is a highly expressive language for describing complex digital systems. This expressiveness

derives from the close relationship between graphical and procedural descriptions. Wirelisp provides

a framework within which a variety of different implementation information can be specified. This

allows multiple implementations of a specification, ranging from a netlist, input to a functional

simulator and layout.

Future plans for Wirelisp include writing functions that make it easier to incorporate behavioral

descriptions and investigating ways to utilize partial information in the structural description to

generate layout. This will produce a very flexible and easy way to perform module generation and

might be extended to the composition of layout modules.

References

[1] J-L. Baer, M. Liem, L. McMurchie, R. Nottrott, L. Snyder, and W. Winder. A notation

for describing multiple views of vlsi circuits. In Proceedings of the 25th Design Automation

Conference. IEEE, June 1988.

13

[2] R. Barth and B. Serlet. A structural representation for vlsi design. In Proceedings of the 25th

Design Automation Conference. IEEE, June 1988.

[3] R. Barth, B. Serlet, and P. Sindhu. Parameterized schematics. In Proceedings of the 25th

Design Automation Conference. IEEE, June 1988.

[4] J. Batali, N. Mayle, H. Shrobe, G. Sussman, and D. Weise. The dpl/daedalus design environ-

ment. In VLSI '81, pages 183-192, 1981.

[5] Edmund M. Clarke and Yulin Feng. Escher-a geometrical laout system for recursively defined

circuits. IEEE Transactions on Computer Aided Design, 7(8):908-918, August 1988.

[61 D. Giuse. Dp: A drawing program. Technical report, Computer Science Dept., Carnegie

-Mellon University, 1982.

[7] P. S. Harrison, P. Moore, R. L. Spickelnier, and A. R. Newton. Data management and

graphics editing in the berkeley design environment. In Proceedings of ICCAD, pages 24-27.

IEEE, November 1986.

[8] C. Kingsley. Earl: a language for integrated circut design. PhD thesis, California Institute of

Technology, 1981.

[9] Robert Mayo. Mocha chip: A system for the graphical design of vlsi module generators. In

Proceedings of the ICCAD, pages 74-77. IEEE. November 1986.

[101 Stephen Slade. The T Programming Language: A Dialect of Lisp. Prentice-Hall, Englewood

Cliffs, New Jersey, 1987.

[11] Christopher J. Terman. Simulation Tools for Digital LSI Design. PhD thesis, Massachusetts

Institute of Technology, October 1983.

14

Ohmics: A Program to Check Ohmic Contacts

Wayne E. Winder

29 March 1989

1 Introduction

In CMOS circuits, ohmic contacts must be near transistors to correctly bias base voltages
and avoid the latch-up phenomenon. Designers using magic [1] to design circuit layouts
must place these contacts manually.

Since ohmic contact placement is done manually, four types of errors can be made. First, an
ohmic contact can be connected to the wrong supply rail. Second, the contact material can
be of the wrong type. Third, since magic creates well regions automatically, it is possible
for the designer to unwittingly isolate transistors in their own wells, with no ohmic contact
present. Finally, it is possible to place the closest ohmic contact too far from the device
(this can also be viewed as a failure to place a contact).

Ohmics has been developed to detect these errors.

2 Design Environment

N-type (p-type) transistors must be near p-ohmic (n-ohmic) contacts connecting the p-
substrate (n-substrate) to ground (Vdd). A check for this condition must be done on ex-
tracted layout to determine the voltages of the ohmic contacts. In order to detect intervening
material of the opposite type substrate, this check must include tracing the connectivity
through the substrate. Mextra [2] has been modified to trace this connectivity, to stamp all
transistors with the node name of the containing substrate, and to output the location and
node name of all ohmic material.

Ohnics processes one neighborhood (called a frame) of the chip at a time. All the data for
the frame must be in memory, so the frame size is limited. While very large (nominally
1800 lambda), one frame may be smaller than the design. To avoid running out of memory
and to increase efficiency, a new filter, simsort has been added to sort the extracted data
by the y-coordinate of the transistor location.

1

3 ALGORITHM 2

Lii
well :Well

Figure 1: Input Daia Figure 2: Instantiate Data

Ohmics is run on the sorted data to detect the errors. For each transistor, ohmics searches
for the closest ohmic contact of the correct type that is connected through the appropriate
substrate. Ohmics outputs text and graphic data locating problem areas. The graphic data
is converted to magic form by the new filter showohms. In this form, the designer can locate
the errors visually on the magic display.

3 Algorithm

The input to ohmics is substrate geometry from the cif file, the locations and node names of
p- and n-ohmic contacts and the locations and substrate nodes of p- and n-type transistors
(see Figure 1).

One frame is processed at a time with the algorithm repeated on each frame. The data is
instantiated into the frame which is cut into a grid. Contacts and transistors are assigned
to the grid squares in which they lie and for the remainder of processing are considered
to be in the middle of their squares. Substrate boundaries are found by intersecting grid
corners with substrate geometry. (See Figure 2) All subsequent processing is done on grid
squares rather than the exact location of items in the grid.

Next, the substrate corners are marked. (This also marks the well corners, since they are
the same.) This must be done after instantiation since the cif geometry is in rectangles and
therefore corners cannot be known until all the geometry has been read. (See Figure 3)

For each transistor, a spiral search outward is performed until the closest directly connected
(DC: no substrate boundary along the line connecting the two) ohmic contact is found up to
the maximum search distance. All non-DC ohmic contacts and all substrate corners found
are saved for possible use later.

4 PERFORMANCE 3

o _ ;. ,

- : C I L-.C

Figure 3: Ma Corers Figure 4: Corner Searc

If there is no DC ohmic contact or a non-DC ohmic contact is closer than the DC ohmic
contact, a corner search is performed using the data previously saved. (See Figure 4) This
search requires an iteractive sorting of the saved corner data by distance from the device,
adding the closest corner to the active list on each iteration. This is a slow approach, but
experiment shows that corner search is required in less than 5% of the total number of
searches.

If no ohmic contact was found or an ohmic contact was found that was beyond the distance
threshhold, ohmics outputs error data. This data gives the location of the transistor and
the closest contact, if it exists, which is beyond the threshhold. Also output is graphic data
which can be filtered into a new magic file (with showohms) to visually display errors.

4 Performance
C

Ohmics is based on mextra code and performs a subset of its extraction. It therefore has
execution times of the same order as extraction of layout. While these times are large for
entire chips (such as APEXII), it is expected that designers will check individual modules
prior to chip assembly. Ohmic contact problems can only be introduced at higher levels of
the hierarchy by miswiring (ground and Vdd) or by excessive overlap of well regions. In the
majority of cases, few errors will be introduced during chip assembly.

In the following table, pe is an 8k transistor processing element in APEXII, a 50k transistor
curve generation chip. This approximates the largest module that can be expected in most
cases. Pe2 is pe rotated 90 degrees.

5 CONCL USION 4

design tran- user sys clock
sistors (sec.) (sec.) (min.)

pe 8k 142.4 5.4 3
pe simsort 63.0 4.0 1
pe2 8k 138.0 10.5 3
pe2 simsort 59.0 5.3 1
APEXII 50k 826.2 123.8 29
APEXII simsort 310.8 23.4 7

5 Conclusion

We have created a tool, ohmics, which will tell the designer if ohmic contacts are connected
to the wrong supply rail, if the wrong type of ohmic material was used in a well (substrate),
if no ohmic contact was placed within some distance of an ohmic contact and if magic has
created a well region which is isolated from all ohmic contacts.

References

(1] G. Hamachi, R. Mayo, J. K. Ousterhout IV. Scott, G. Taylor. Magic - VLSI layout
editor from 1986 VLSI Tools, Computer Science Division, U. C. Berkeley, December
1985

[2] Dan Fitzpatrick Mextra - Manhattan circuit extractor from 1983 VLSI Tools, Computer
Science Division, U. C. Berkeley, March 1983.

